Inhibition by calponin of isometric force in demembranated vascular smooth muscle strips: the critical role of serine-175.

نویسندگان

  • Y Uyama
  • Y Imaizumi
  • M Watanabe
  • M P Walsh
چکیده

alpha-Calponin is a thin-filament-associated protein which has been implicated in the regulation of smooth muscle contraction. Quantification of the tissue content of rat tail arterial smooth muscle revealed approximately half the amount of alpha-calponin relative to actin compared with chicken gizzard and other smooth muscles, suggesting that this tissue would be particularly suitable for investigation of the effects of exogenous alpha-calponin on the contractile properties of permeabilized muscle strips. Rat tail arterial strips demembranated with Triton X-100 retained approximately 90% of their complement of alpha-calponin, and exogenous chicken gizzard alpha-calponin (which conveniently has a slightly lower molecular mass than the rat arterial protein) bound to the permeabilized muscle, presumably through its high affinity for actin. Exogenous alpha-calponin inhibited force in demembranated muscle strips in a concentration-dependent manner when added at the peak of a submaximal Ca(2+)-induced contraction, with a half-maximal effect at approximately 3 microM alpha-calponin. Pretreatment of demembranated muscle strips with alpha-calponin inhibited subsequent force development at all concentrations of Ca2+ examined over the activation range. The inhibitory effect of alpha-calponin was shown to be Ca(2+)-independent, since exogenous alpha-calponin also inhibited force in the absence of Ca2+ in demembranated muscle strips containing thiophosphorylated myosin. Phosphorylation of alpha-calponin on Ser-175 by protein kinase C has been suggested to alleviate the inhibitory effect of alpha-calponin on smooth muscle contraction. To test this hypothesis, the effects on Ca(2+)-induced and Ca(2+)-independent contractions of demembranated muscle strips of phosphorylated alpha-calponin and three site-specific mutants of alpha-calponin (in which Ser-175 was replaced by Ala, Asp or Thr) were compared with the effects of unphosphorylated tissue-purified and recombinant wild-type alpha-calponins. The recombinant wild-type protein behaved identically to the unphosphorylated tissue-purified protein, as did the S175T mutant, which is known to bind actin with high affinity and to inhibit the actin-activated myosin MgATPase in vitro. On the other hand, phosphorylated alpha-calponin and the S175A and S175D mutants, which bind weakly to actin and have little effect on the actin-activated myosin MgATPase in vitro, failed to cause significant inhibition of force induced by Ca2+ or myosin thiophosphorylation. These results support a role for alpha-calponin in the regulation of smooth muscle contraction and indicate the functional importance of Ser-175 of alpha-calponin as a regulatory site of phosphorylation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A role for serine-175 in modulating the molecular conformation of calponin.

Calponin is an actin filament-associated protein found in smooth muscle and non-muscle cells. Calponin inhibits actin-myosin interaction in a manner that is prevented by protein kinase C (PKC)-catalysed phosphorylation of serine-175. To investigate the molecular basis of serine-175-mediated regulation, we examined the effect of phosphorylation on the conformation of calponin using monoclonal an...

متن کامل

Mechanisms of direct inhibitory action of ketamine on vascular smooth muscle in mesenteric resistance arteries.

BACKGROUND Ketamine was previously suggested to relax vascular smooth muscle by reducing the intracellular Ca2+ concentration ([Ca2+]i). However, no direct evidence is available to indicate that ketamine reduces the [Ca2+]i in vascular smooth muscle of systemic resistance arteries. METHODS Endothelium-intact or -denuded smooth muscle strips were prepared from rat small mesenteric arteries. Is...

متن کامل

Phosphorylation of h1 Calponin by PKC epsilon may contribute to facilitate the contraction of uterine myometrium in mice during pregnancy and labor

BACKGROUND The timely onset of powerful uterine contractions during parturition occurs through thick and thin filament interactions, similar to other smooth muscle tissues. Calponin is one of the thin filament proteins. Phosphorylation of calponin induced by PKC-epsilon can promote the contraction of vascular smooth muscle. While the mechanism by which calponin regulates the contraction of preg...

متن کامل

The action of sevoflurane on vascular smooth muscle of isolated mesenteric resistance arteries (part 2): mechanisms of endothelium-independent vasorelaxation.

BACKGROUND The precise mechanisms behind the direct inhibitory action of sevoflurane on vascular smooth muscle have not been fully elucidated. METHODS Endothelium-denuded smooth muscle strips were prepared from rat small mesenteric arteries. Isometric force and intracellular Ca2+ concentration ([Ca2+]i) were measured simultaneously in the fura-2-loaded strips. In another series of experiments...

متن کامل

Mechanisms of direct inhibitory action of isoflurane on vascular smooth muscle of mesenteric resistance arteries.

BACKGROUND Isoflurane has been shown to directly inhibit vascular reactivity. However, less information is available regarding its underlying mechanisms in systemic resistance arteries. METHODS Endothelium-denuded smooth muscle strips were prepared from rat mesenteric resistance arteries. Isometric force and intracellular Ca2+ concentration ([Ca2+]i) were measured simultaneously in the fura-2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 319 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1996